skip to main content


Search for: All records

Creators/Authors contains: "Ding, Rong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Wide-area soil moisture sensing is a key element for smart irrigation systems. However, existing soil moisture sensing methods usually fail to achieve both satisfactory mobility and high moisture estimation accuracy. In this paper, we present the design and implementation of a novel soil moisture sensing system, named as SoilId, that combines a UAV and a COTS IR-UWB radar for wide-area soil moisture sensing without the need of burying any battery-powered in-ground device. Specifically, we design a series of novel methods to help SoilId extract soil moisture related features from the received radar signals, and automatically detect and discard the data contaminated by the UAV's uncontrollable motion and the multipath interference. Furthermore, we leverage the powerful representation ability of deep neural networks and carefully design a neural network model to accurately map the extracted radar signal features to soil moisture estimations. We have extensively evaluated SoilId against a variety of real-world factors, including the UAV's uncontrollable motion, the multipath interference, soil surface coverages, and many others. Specifically, the experimental results carried out by our UAV-based system validate that SoilId can push the accuracy limits of RF-based soil moisture sensing techniques to a 50% quantile MAE of 0.23%.

     
    more » « less